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The elastic properties of an anisotropic porous material can be represented as functions of the 
material's solid volume fraction (or porosity) and the principal diameters of the material's fabric 
ellipsoid. The fabric ellipsoid is a measure of the anisotropy of the microstructure of a material. 
The definitions and measurement techniques for fabric ellipsoids in granular materials, foams, 
cancellous bone, and rocks are discussed. The principal results presented in this work are 
algebraic expressions for the dependence of the orthotropic elastic constants upon both solid 
volume fraction and the fabric ellipsoid. 

1. I n t r o d u c t i o n  
There are a number of natural and engineering 
materials which have a significant amount of porosity. 
Examples include granular materials (soil, sand, etc.), 
geological solids (rocks), sintered materials (ceramics, 
materials made by powder metallurgy), and cellular 
materials (wood, polymer foams, cancellous bone). 
For these materials, elastic constants have been found 
to have a strong dependence upon the solid volume 
fraction of the material. The solid volume fraction, Vv, 
is defined as 

V v = Vm/(V  m -~- Vp) (1) 

where Vm is the volume of the solid matrix, and Vp is 
the volume of the pores. Solid volume fraction is the 
additive reciprocal of porosity, p, 

Vv = 1 - Vp/(Vm'~- Vp) = 1 - - p  (2) 

Many previous studies reported the relationship 
between elastic properties and solid volume fraction in 
different types of materials. These studies can be 
grouped into two classes: those which deal with low- 
porosity materials (porosity less than 50%) and those 
which deal with high-porosity materials (porosity 
greater than 50%). The low-porosity materials include 
porous sintered materials, rocks, ceramics and some 
granular materials. The high-porosity materials include 
polymer foams, cork, balsa wood, and cancellous 
bone. 

Several studies have been carried out on the effect of 
variations of porosity on porous sintered materials. 
Spriggs [1] found empirically that the Young's modu- 
lus of porous sintered materials was exponentially 
dependent on porosity 

E = E0 exp ( - a p )  (3) 

where E0 is the zero-porosity Young's modulus and a 
is a constant. Wang [2] constructed a model of sintered 
materials which predicts the relationship between 
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Young's modulus and porosity in these to be 

E = E0 exp [-(a0p + a lp  2 + aEp 3 + . . . ) ]  (4) 

where a0, al, a2, etc. are material-dependent con- 
stants. Experimental evidence showed that terms in p 
of order higher than two could be neglected. Wang's 
[2] model also suggested that shear modulus, G, is 
proportional to Young's modulus or 

G/Go = E/Eo  (5) 

where Go and E0 are the zero-porosity shear and 
Young's moduli, respectively. 

Most studies of high-porosity materials support a 
model which suggests that the Young's and shear 
moduli are proportional to the solid volume fraction 
raised to some power n 

E = AW" (6) 

G = BVv" (7) 

where A, B, n and m are material-dependent constants. 
Gibson and Ashby's [3] theoretical model of cellular 
materials showed that the Young's and shear moduli 
are dependent upon the square of solid volume frac- 
tion and, therefore, that shear modulus is proportional 
to Young's modulus. Their conclusion was based on 
the assumption that the predominant mode of defor- 
mation in foams is the bending of the structural 
elements. Their theoretical result is supported by 
experimental results from Baxter and Jones [4], Ben- 
susan et al. [5], Brighton and Meazey [6], Chan and 
Nakamura [7], Gent and Thomas [8], Gibson [9], 
Moore et al. [10], and Phillips and Waterman [11]. 
Gibson and Ashby [3] also concluded that Poisson's 
ratio in cellular materials is independent of solid 
volume fraction. This conclusion is supported by 
experimental results from Gent and Thomas [8] and 
Gibson [9]. Patel [12] studied structural foams under 
the assumption that the predominant mode of defor- 
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mation is axial deflection of the structural elements 
and his results suggest that Young's modulus is linearly 
dependent on solid volume fraction. The empirical 
study by Carter and Hayes [13] showed the Young's 
modulus to be dependent on the cube of the density in 
cancellous bone. This result is considered to be equiv- 
alent to a dependence upon the cube of solid volume 
fraction because the matrix material density of bone 
tissue is reasonably constant. However, Bensusan 
et al. [5] found the Young's modulus of cancellous 
bone to be proportional to the square of density and 
Williams and Lewis [14] found Young's modulus of 
cancellous bone to be linearly proportional to density. 

The elastic properties of an elastic, anisotropic 
porous material are dependent both on its solid 
volume fraction and the geometrical organization of 
its structure. Therefore, if solid volume fraction is the 
first measure of local structure a second measure of 
the local structure is needed to characterize the geo- 
metrical anisotropy of the material. This topic is 
addressed in the following section. 

2. Fabric 
It is recognized that porosity or solid volume fraction 
is the primary measure of local material structure in 
a porous material. Porosity does not reflect any direc- 
tionality of the specimen's structure. What then is 
the second best measure of local structure? This ques- 
tion was posed in the context of granular materials 
by Cowin [15]. Now there appears to be general 
agreement that a fabric ellipsoid is the best second 
measure of local material microstructure in many 
porous materials. In this paper the term fabric ellip- 
soid indicates any ellipsoid (i.e. any positive definite 
second-rank tensor in three dimensions) that charac- 
terizes the local anisotropy of the material's micro- 
structure. The fabric ellipsoid is a point property (even 
though its measurement requires a finite test volume) 
and is therefore considered to be a continuous func- 
tion of position in the material. Methods exist to 
measure fabric ellipsoids in cellular materials, rocks 
and granular materials and are described below. 

In cellular materials, foams and cancellous bone, a 
fabric ellipsoid can be associated with the directional 
variation of a lineal measure called mean intercept 
length. The mean intercept length is the average dis- 

tance between two solid/void interfaces in a given 
direction. A grid of parallel test lines is laid over a 
specimen in a given direction, as illustrated in Fig. 1, 
and the length of the test line is divided by the number 
of intercepts to give mean intercept length. Measure- 
ments are repeated for test lines orientated in several 
directions. The experimental procedure for this type 
of measurement is described by Whitehouse [16] 
and Harrigan and Mann [17]. Measurements are 
made on a plane of the material which is prepared to 
show contrast between the solid matrix and the pores. 
The methodology of making measurements is easily 
adapted to an automated computational system [17]. 
The fabric ellipsoid is constructed by measuring mean 
intercept length as a function of direction in three 
orthogonal planes. In each of the three planes the data 
are fitted to the equation of an ellipse. The three 
orthogonal ellipses that are formed are projections of 
an ellipsoid which is the fabric ellipsoid. 

A different fabric measure is employed for granular 
materials. Oda [18], Oda et al. [19], and Satake [20] 
suggest that the best indicator of fabric in granular 
materials is the probability density function of the 
distribution of the orientation of contact normals, i.e. 
the normal at the point of contact between two granu- 
lar particles, see Fig. 2. This distribution is found 
to be periodic with respect to direction and can be 
represented by an ellipsoid. The number of contact 
normals in a given direction is measured on an embed- 
ded section of a granular material. Data taken in a 
number of directions can be fitted to the equation of 
an ellipse. And the data from three orthogonal planes 
form the fabric ellipsoid. 

An automated computational system has been 
developed to quantify fabric from electron micro- 
graphs of soil by Tovey [21]. This system examines 
the gradients of the intensity of an image at each 
spatial point. The distribution of gradient vectors with 
respect to direction plotted on a polar plot tends to 
correlate to an ellipse. 

In the analysis of rock mechanics, the fabric is best 
determined by the orientation of cracks within the 
rock. A fabric ellipsoid can be formed from mean inter- 
cept length measurements taken from three ortho- 
gonal planes of a rock. This definition of fabric is 
similar to those proposed by Satake [20] and Harrigan 

Figure 1 Test grid of  parallel lines superimposed on a porous  
structure. Figure 2 Contact  normals,  n (~), o f  a granular  particle. 
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Figure 3 Test grid of parallel lines superimposed upon a rock, 

and Mann [17]. Fig. 3 illustrates the measurement of 
mean intercept length in rock mechanics using a grid 
of parallel test lines superimposed on the surface of a 
rock. Oda [22] and Oda et al. [23] proposed a fabric 
ellipsoid for rock which incorporated the concentra- 
tion of cracks as well as the directionality of cracks. In 
this definition the volume of the fabric ellipsoid is 
proportional to the concentration of cracks. 

A fabric ellipsoid can be represented mathematic- 
ally by a positive definite, symmetric second-rank 
tensor. The fabric tensor can be related to the fourth- 
rank elastic compliance tensor by tensor algebra. This 
relationship was derived by Cowin [24]. The results 
show that the orthotropic elastic moduli can be related 
to the lengths of the major axes of the fabric ellipsoid. 
The relationship between the fabric tensor and the 
compliance tensor is summarized in the following 
section and a derivation is given in Appendix 1. 

3. Relationship between the fabric 
tensor and elastic properties 

Let el to 0- 6 and el to/~6 represent the si x components 
of stress ax, o-y, az, zy~, rxz, ~xy and strain sx, sy, e~, 
2eye, 2e~z, 2exy, respectively. The orthotropic, linear 
elastic stress strain relation can then be written 

three planes of reflective symmetry which characterize 
orthotropic material symmetry. The general relation- 
ship between the elastic constants and the fabric ellip- 
soid in the coordinate system which is composed of 
the normals to the three planes of reflective symmetry 
is found in Appendix 1 (Equation A4). Cowin [24] also 
shows that, if terms of order three and higher in A, B, 
and C are neglected, then the relationship between the 
orthotropic moduli El, E2, E3, Gl, G2, G3, v12, vl3, v23 
and the solid volume fraction, V~, and the fabric ellip- 
soid A, B, C can be expressed by 

1lEt = gl + 2h~ + (g2 q- 2h2) I + (g3 -]- 2h3)12 

+ (g4 + 2h4) II  + 2(g 5 + 2h5)A 

+ 2(g6 + 2h6)IA + (297 + g8 + 4h7) A2 

1/E2 = g~ + 2hi + (g2 + 2h2) I +  (g3 + 2h3) I2 

+ (g4 + 2h4)H + 2(g5 + 2hs)B 

+ 2(g6 + 2h6)IB + (2g7 + g8 + 4h7) B2 

l/E3 = gl + 2h~ + (g2 + 2h2)I + (g3 + 2h3)12 

-~- (g4 "~- 2h4)11 + 2(g 5 Jr- 2h5)C 

+ 2(g6 + 2h6)1C 4- (2g7 4- g8 + 4h7) C2 

--vl2/El = gl + g2I + g3 I2 + g4H 

+ (g5 + g6I)(A + B) 

-k- g7(A 2 -t'- B 2) -I- g s A B  

-v l3 /El  = gl + g2I + g3I 2 4- g4H 

+ (g5 + g6I)(A + C) 

+ g7(A 2 + C 2) + gsAC 

-v23/E2 = gl + g2I + g3 I2 + g4H 

+ (g5 + g6I)(B + C) 

4- g7(B 2 4- C 2) 4- g8BC 

1/G23 = hi + h2I + h3 I2 + h4H 

+ (h 5 + h6I)(B + C) + hT(B 2 + C 2) 

l/E1 

- Vl2/El 

- -  Vl3/E 1 

0 

0 

0 

--  Y21/E2 --  Y31/E3 0 0 0 

1/F~2 - v32/E3 0 0 0 

-- V23/E 2 l I E  3 0 0 0 

0 0 1/G23 0 0 

0 0 0 l/G31 0 

0 0 0 0 1/Gl2 

(8) 

where El, E2, and E3 are the Young's moduli, v12, v21, 
vl3, v31, v23, and v32 are the Poisson's ratios and G12, 
G3~, and G23 are the shear moduli. The Young's moduli 
and Poisson's ratios satisfy the additional restrictions 

Vlz/El = v2~/E2, Vl3/El = v31/E3, 

v23/E2 = v32/E3 (9) 

Let A, B, and C denote the principal diameters of the 
fabric ellipsoid. Cowin [24] shows that if the matrix 
material of which the microstructure is composed is 
itself isotropic, then the principal diameters of the 
fabric ellipsoid must coincide with the normals to the 

1/G31 = hi + h2I + h3 I2 + h411 

+ (h 5 + h6I)(C 4- A) 4- hT(C 2 -k- A 2) 

1/Gl2 = hi + h2I + h3F + h4H 

+ (h5 + h6I)(A + B) + hT(A 2 + B 2) 
(lO) 

where the g and h are functions of Vv only and I, II, 
and I I I  are the invariants of the fabric tensor 

I = A + B +  C, H = A B +  B C +  AC, 

I I I  = ABC (11) 
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4. Simplification of the relationship 
between elastic constants and fabric 
by assuming the Poisson's ratios to 
be independent of solid volume 
fraction 

If Poisson's ratios are assumed to be independent of 
solid volume fraction, certain relationships between g 
and h in Equation 10 can be obtained. In porous 
materials this assumption is reasonable because the 
lateral contraction is due predominantly to mechanis- 
tic effects rather than a consequence of a volume pre- 
serving tendency. Physical arguments for this assump- 
tion in cellular materials and sintered materials are 
found in [2, 3, 8, 9]. Gibson and Ashby [3] developed 
a structural model to study the mechanics of  rigid 
cellular materials. One of the conclusions reached 
through their analysis was that the Poisson's ratio of  
an isotropic cellular material was independent of  the 
material's porosity. Experimental data from Gibson 
[9] and Gent and Thomas [8] show, statistically, no 
dependence of Poisson's ratio on porosity in isotropic 
cellular plastics. Wang [2] presented a theoretical 
analysis of sintered isotropic porous materials which 
showed Young's modulus, E, to be proportional to 
shear modulus, G, at all porosities. Poisson's ratio, v, 
is related to E and G in an isotropic material by v = 
E/2G - 1 and if E and G are proportional, then v is 
a constant. 

We consider v~2 as a typical orthotropic Poisson's 
ratio. An expression for v~can be obtained by substi- 
tution for 1~El and - - v l z / E  1 from t:quatlon 10 into, 

=(vq 
\Eli 

thus 

--[g~ + g2 I-t- g3 I2 q- g4 H +  (g5 + 

- 4(g5 + 2hs)(g2h~ - glh2)/(gl Jr- 2hi) 3 

- (g2 + 2h2)(--glgs + 2hlg5 

- 4&hs)/(gl + 2hl) 3] 

J = -[g6(gl q- 2h,) - gs(g2 q- 2hz)l/(& + 2hi) 2 

k = -[gs(gl + 2hi) - 2gs(gs + 2hs)]/(g~ + 2h,) 2 

If Via is assumed to be independent of solid volume 
fraction, then a, b, c, d, e, f ,  g, h, i, j ,  and k must be 
constants. By applying this argument it can be shown 
that g~, gs, g7, gs, hi, hs, and h7 must be proportional. 
Thus 

gl = f,(Vv), g5 = clfl(V~), g7 = Czfl(Vv), 

g8 = e3fl(Vv) 

hi = C4fl(gv), h5 = Csfl(W), h7 = c6f,(K) 

and 

ge 

g6 

h2 

h6 

= A ( W ) ,  g ,  = A(Vv) ,  

= L ( V v )  

= A ( v o ,  h, = f ~ ( v 0 ,  

= f~ (Vv) 

g, = f4 (<) ,  

h, = A ( v 0 ,  

(15) 

The application of the assumption of constant Poisson's 
ratios thus reduces the number of  material-dependent 
functions of solid volume fraction from 15 to 9 func- 
tions and 6 constants which must be determined experi- 
mentally. The resulting simplified relationship between 
the elastic constants and the fabric ellipsoid and the 

g6I)(A -Jr B) Jr- gv(A 2 4- B z) 4- gsAB] 
)212 

[gl -]- 2hl + (g2 -[- 2h2)I-t- (g3 + 2h3) I2 +(g4 + 2h4)H 

The result of the division of these polynomials is 

vl2 = a + bI  + cA + dB + eI  2 + f l I  + gA 2 

+ hB 2 + iIA + j I B  + k A B  + 0(3) + . . .  
(14) 

where 

a = 

b 

¢ 

d 

e 

--gl / (gl  -t- 2h0 

= -2(g2h ,  - g, hz)/(g, + 2hi) 2 

= (gigs -- 2h~g5 + 4glhs)/(g, + 2h0 2 

= - g s / ( g l  + 2h0 

-2 [ (&hl  - g, h3)/(g~ + 2h,) 2 

- (g2 + 2h2)(g2hl - glh2)/(gl + 2h,) 3] 

f = --2(g4hl --glh4)/(gl + 2hl) 2 

g = - [ ( -glg7 - g, g8 - 4g~h7 + 2h,g7)/(gl + 2h02 

- ( - g i g s  + 2hlg5 -- 4&hs) 

x (2g 5 + 4hs)/(gl + 2hi) 3] 

h = -gT/(g, + 2&) 

i = - [ ( - g ,  g6 + 2g6h~ - 4glh6)/(gl + 2h0 2 

+ 2(& + 2hs)A + 2(g 6 4- 2h6)IA 4- (2g v + g8 + 4h7) A2] 

(13) 

solid volume fraction can then be written as 

1/E 1 = (1 + 2c4)f~ + (f2 + 2f6)I 

+ (f3 + 2f7)I 2 + (f4 + 2fs)II  

Jr- 2@1 -+- 2cs)f~A + 2(f5 + 2fg)IA 

+ (2c2 + c3 + 4c6)flA 2, 

1/E2 = (1 + 2c4)f~ + (f2 + 2f6)I 

+ (f3 + 2f7)I 2 + (f4 + 2f8)n 

+ 2(cl + 2c , ) f~B + 2(f,  + 2fg)IB 

+ (2c2 + c3 + 4c6)flB 2, 

1/E 3 = (1 q- 2c4)fl Jr- (f2 4- 2f6)I 

+ (f3 + 2f7)I 2 + (f4 + 2A)11 

+ 2(c, + 2c5)fl C + 2(f5 + 2f9)IC 

-k- (2C 2 q- C 3 q- 4 c 6 ) f l C  2, 

--YI2/EI -~ f l  q'- f 2 I  + f 3 I  2 q- f 4 g  -']- (Clfl Jr" f s I )  

x (A + B) + c2f~(A 2 + B 2) + c3f~AB, 

--v,3/E,  = f~ + f 2 I  + f 3 I  2 + f41I + (clf~ + f s I )  
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× (A -Jr- C)  -k c z f l ( A  2 --I- C 2) k- c 3 f i A C ,  

- v23 /E2  = fl  H- f2I + f3I 2 + f4II + (C,A + fs1) 

x (B + C) + czf~(B 2 + C 2) + c3fIBC , 

I/G2s = c4fl + f6I + f7 I2 + f8II + (csf~ + fg/) 

x (B + C) + c6fl(n 2 -k C2),  

1/G31 = c4f~ + f6I + f7 I2 + f s l l  + (csf~ + .~I) 

X (C -q- A) -q- c6fl(C 2 q- A2), 

1/G~2 = c4f~ + f6I + fTI 2 + f s l l  + (csf~ + f9I) 

x (A + B) + e6f1(A 2 + B 2) (16) 

5. Simpli f icat ion of the relationship 
between elastic constants and fabric 
by normalizing the fabric tensor 

In some cases it is desirable to normalize the fabric 
tensor. From his model, Patel [12] concluded that the 
mechanical properties of  rigid foams were independ- 
ent of pore size. Similarly, in their theoretical model 
for cellular plastics, Gibson and Ashby [3] assumed 
that the elastic properties are independent of the 
absolute dimensions of  the microstructure. Also, from 
his model for sintered porous materials, Wang [2] 
showed that elastic properties were independent of 
particle size. All of the above studies suggest that 
normalization of  the fabric tensor is valid in many 
porous materials. The fabric tensor is normalized by 
the requirement 

I = A + B +  C = l .  (17) 

By applying the requirement 17 to Equation 10, Equa- 
tion 10 becomes 

l /El  = kl + 2k6 + (k2 + 2k7)H 

+ 2(k3 + 2k8)A + (2k4 + ks + 4kg)A 2 

1/E2 = k, + 2k6 + (k2 + 2kT)H 

+ 2(k3 + 2ks)B + (2k4 + k5 + 4kg)B 2 

1/E3 = kt + 2k6 + (k2 + 2kv)H 

+ 2(k3 + 2k8)C + (2k 4 q- k 5 q- 4k9)C 2 

--vl2/E1 = kl + kzH + k3(A + B) 

H- k4(A 2 q- 0 2) H- ksAB 

-v'13/E1 = kl + k2ll + k3(A + C) 

"q- k4(A 2 "q- C 2) q- ksAC 

-Vz3/Ez = kl + kzH + k3(B + C) 

+ k4(B z + C 2) + ksBC 

1/G23 = k 6 --t- k7II + k8(B + C) -t- k9(B 2 -I- C 2) 

1/G31 = k6 + k7ll + ks(C + A) + k9(C 2 + A 2) 

1/G,~ = k 6 + k7II -[- k8(A  + B) 71- kg(A 2 + B 2) 
(18) 

where kl = gl + g2 + g3, k2 = g4, k3 = g5 + g6, 
k4 = g7, k5 = g8, k6 = hi + h~ + h3, k 7 = h4, k s = 
h5 + h6, and k9 = hr. 

A system of  nine equations is produced with nine 
functions of solid volume fraction. These nine equa- 
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tions are not linearly independent. At a given density, 
seven unique solutions can be solved for directly. 
From these solutions five of  the nine ks (k3, k4, ks, ks, 
and k9) can be derived. The remaining ks (kl, k2, k6, 
and k7) are solved for using linear regression on data 
from a number of specimens. A method for solving the 
Equations 18 is given in Appendix 2. 

If it is also assumed the Poisson's ratios are inde- 
pendent of solid volume fraction the nine ks are 

kl = f~(V~), k3 = clf~(Vv), k4 = Cz/l(V0, 

ks = c3f~(Vv), k6 = c4f~(Vv), k8 = cJ~(Vv), 

k9 = c6f~(Vv), k2 = f2(V~), k7 = f3(Vv) (19) 

This demonstrates the further reduction to three func- 
tions of Vv and six material dependent constants which 
must be determined experimentally. The relationship 
between the orthotropic elastic constants and the 
fabric ellipsoid and solid volume fraction as a result of 
the simplifying assumptions of  constant Poisson's 
ratios and normalized fabric tensor is then 

l/E1 = (1 + 2c4)fl q- (f2 -}- 2f3)H 

+ 2(ci + 2cs)f~A + (2c2 + c3 + 4c6)flA 2 

1/E2 = (1 + 2c4)f~ + (f2 + 2f3)II 

+ 2(cl + 2cs)flB + (2c2 H- c 3 -]- 4c6)flB 2 

1/E3 = (1 + 2c4)f~ + (f2 + 2f3)II 

+ 2(el + 2c5)fi C + (2c2 + c3 + 4c6)fl C 2 

--v,2/El = A + A l l  + c1A(A + B) 

+ czf~(A 2 + B 2) + c3LAB 

-v,3/E3 = f~ + f f l I  + clf~(A + C) 

+ czf~(A z + C 2) + c3f~AC 

-v23/E2 = f~ + ./'211 + cIA(B + C) 

-1- c2 f l (B  2 q- C 2) -t- c 3 f l B C  

1/6~ = Ca f, + f~II + c J , ( ,  + 0 

q- c6fl(B 2 ~- C 2) 

1/631 = c,f~ + f311 + csA(C + A) 

+ ¢6 f l (C  2 --}- A e) 

1/a12 = c4f, + f~i i  + csU,(A + B) 

+ c6f~(A 2 + B 2) (20) 

This model facilitates relatively easy experimental 
quantification of the relationship between elastic 
properties and microstructure for a given material. 

6. Conclusions 
A general relationship between the elastic constants 
and the solid volume fraction and fabric of  an ortho- 
tropic porous solid was reported by Cowin [24]. The 
fabric can be represented by a fabric ellipsoid which 
represents the geometric anisotropy of  the porous 
structure. Methods to measure fabric ellipsoids in 
cellular materials, foams, cancellous bone, granular 
materials, soils and rocks have been discussed. 

The general relationship is simplified by: 
1. assuming that the Poisson's ratios are independ- 



ent of solid volume fraction. Studies which support 
this assumption in foams and sintered materials were 
discussed; 

2. assuming that the fabric ellipsoid could be 
normalized. 
If both of these assumptions are valid in a given 
material the experimental determination of three 
functions of solid volume fraction and six material- 
dependent constants is required to characterize the 
general relationship. To determine these constants the 
elastic properties, the fabric ellipsoid, and the solid 
volume fraction must be determined for a number of 
specimens at various porosities. 

Appendix  1 
A relationship between the orthotropic elastic constants 
and the fabric ellipsoid was derived by Cowin [24]. 
The fabric ellipsoid can be represented by a positive 
definite, symmetric second rank tensor. This fabric 
tensor is denoted H. The development of this relation- 
ship is based on the assumption that the solid material 
which makes up the porous material's microstructure 
is isotropic and that the anisotropy of the material 
itself is due only to the geometry of the microstructure 
represented by the fabric tensor. The mathematical 
statement of this notion is that the stress tensor, a, is 
an isotropic function of the strain tensor, ~, and the 
fabric tensor, H, as well as the solid volume fraction, 
Vv. Thus the tensor valued function 

a = a(Vv, 8, H )  (AI)  

has the property that 

QoQ T = rr(V~, QeQT, QHQT) (A2) 

for the orthogonal tensors Q. This definition of an 
isotropic tensor valued function is that given, for 
example, by Truesdell and Noll [25]. 

The most general form of the relationship between 
the compliance tensor and the fabric tensor consistent 
with the isotropy assumption described above is 

Kijkm : alc]ijC~m "-b a2(I-Iork m q- 6~jHl:,,,) 

~'- a3((~ij HkqHqm -~- (~kmI-IiqHqj) "~- bl Hij nkm 

+ b2(~jI-i j i~, .  + 1-I.Hj-I~m) 

-~ b3HisnsjHkqHqm -~- Cl(~ki~mj "~- ~mi(~kj) 

+ c2(tl~kr,,j + Hkjrm~ + H~,,,rkj + Hmjrk~) 

+ c3(n~rH~rmj + Hk~Hrjrm, 

"b HirHrm6kj + HmrHrjrik), ( A 3 )  

where K, jkm is the fourth rank compliance tensor in 
indicial notation and at, a2, a3, b[, b2, b3, Cl, c2, and 
c3 are functions of W and trH, trH 2 and trH 3. 

The representation (Equation A3) for the fourth- 
rank compliance tensor is not capable of representing 
all possible elastic material symmetries. It cannot 
represent triclinic material symmetry, which is total 
lack of symmetry, or monoclinic symmetry which is 
characterized by a single plane of reflective material 
symmetry. The least material symmetry that can be 
represented by Equation A3 is orthotropy. To see that 
this is the case we expand Equation A3 in the indicial 

notation in the coordinate system that diagonalizes 
the fabric tensor. Thus the Hi2, //23, and Hi3 com- 
ponents of H vanish in this system and Hi1, H2:, and 
//33 are the three eigenvalues of H. The result of this 
expansion of Equation A1 is the following nine non- 
zero components 

Klt l l  = at + 2cl + 

+ (2a3 + bt 

K2222 -~ a t --[- 2C t q- 

-F (2a3 + bl 

K3333 ~- a t + 2Cl + 

+ 

K1122 = al  

+ 

+ 

K1t33 = al  

+ 

+ 

(2233 = at 

+ 

+ 

K1212 ~ Cl 

~1313 ~ C1 

K2323 = c2 

2(a2 + 2c2)Hlt 

q- 4 c 3 ) H l l  2 -t- 2b2Hil 3 + b 3 H l l  4 

2(a2 + 2c2)H22 

a t- 4c3)H222 q- 2b2H223 q- b3H224 

2(a2 + 2c2)H33 

(2a3 + bl + 4c3)H332 + 2b2H333 + b3H334 

+ a2(Hll + 1t22) + a3(Hll z -F H222) 

b, HllH22 + bz(HllH222 + H22H112) 

b3Hl12 H222 

+ a2(HH + H33) + a3(HH 2 + H332) 

blHHH33 + b2(HttH332 -b H 3 3 H l t  2) 

b3 Htt 2 H332 

+ a:(H22 + /433) + a3(/4:: 2 + /-/33 ~) 

b,I-I2:H33 + b2(H~H3~ ~ + H~H22 ~) 

b3 H222 H332 

-1- c2(HI1 -k- H22 ) + c3(HI12 + /-/222) 

+ c2(Htt + //33) + c3(HH 2 + H332) 

+ c2(H~ + H33) + c~(H2~ ~ + 1-I33 ~) 
(A4) 

and that all other components gijkm vanish. If K/jk,, is 
expanded to a coordinate system that does not diag- 
onalize the fabric tensor, 21 non-zero components 
exist. Therefore, it is imperative experimentally that 
elastic properties be measured in a coordinate system 
which diagonalizes H. 

In the exact representation for Kij~m above there 
exist terms in Hup  to order four. However, it is shown 
by Cowin [24] that this representation can be approxi- 
mated by retaining terms up to order two. In this 
approximation as, a2, a3, bl, b2, b3, Cl, C2, and c3 are 
given by 

a~(V~, I, II, I I I ) =  g,(Vv) + g2(W)I + g3(Vv)I 2 

-t- g4(Vv)II 

a2(V~, L II, III) = gs(Vv) + g6(Vv)I 

a3(Vv, I, II, 111) = g7(W) 

b~(V~, 1, II, III) = gs(Vv) 

bz(Vv, I, II, III) = 0 

b3(Vv, I, II, I I I ) =  0 

cl(V~, I, 11, 111) = h~(Vv) + h2(Vv)I + h3(Vv)I 2 

-t- h4(Vv)II 

c2(V~, L II, I I I ) =  h,(Vv) + h6(V~)I 

c3(V~, 1, 11, III) = hT(W) (A5) 
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where g and h are functions of  Vv only, and where 
I, II, and I l l  are the invariants of H related to trH, 
trH 2 and trH 3 by 

I = trH, II = 1/2((trH) 2 - t rH  z) 

III = 1/6((trH) 3 - 3 t r H t r H  2 + 2 t r H  3) 

(A6) 

Appendix 2 
At a given solid volume fraction the values of k3, k4, 

ks, k8, and k 9 can be determined directly by breaking 
the nine equations in Equation 19 into three sets of 
linearly independent equations and solving those equa- 
tions. The values of  k8 and k 9 are found by solving 

1/G12 = ~7 + ~8(A + B) + o~9(A 2 + B 2) 

1/G~3 = ~7 + 0(8(A + C) + ~9(A 2 + C 2) 

1/G23 = 0(7 + 0(8(B + C) + 0(9(B 2 + C 2) (A6) 

where  0(7 = k6 "+- k7II, 0(8 = k8, a n d  0(9 = k9. T h e  
value of  k3 can be found by solving 

1~El = ~1 q- ~2 A if" ~3 A2 

1/E2 = oq + 0(2B + 0(3B 2 

1/E3 = ~1 + 0(2C + 0(3 C2 (A7) 

where ~1 = kt + 2k6 + (k2 + 2k7)II, ~2 = 2(k3 + 2k8), 
and ~3 = (2k4 + k5 + 4k9). Therefore, 

k 3 = ~2/2 - 2k8 (A8) 

The values of k4 and ks are found by solving 

- - v I 2 / E  1 -- k3(A + B) = ~4 + 0(5( A2 -t- B2) 

-F o~6AB 

--v,3/E ' -- k3(A -Jr- C)  = 0( 4 "q- 0(5(A 2 -}- C 2) 

-}- o~6AC 

--v23/E2-- k3(B + C) = ~4 + ~s( B2 + C2) 

+ 0(6BC (A9) 

where ~4 = kl + k2II, 0(5 = k4, and 0(6 = ks. 
The values of  k~, k2, k6, and k 7 can  be found from 

0(4 and cx 7 using multiple regression methods on data 
from many specimens. 

~4(V~) = kl(V~) + k2(V~)II, and 

~7(V~) = k6(Vv) + kv(Vv)II (A10) 

A double regression, with Vv and H as independent 
variables, applied to the above equations can be used 
to determine kl, k2, k6, and k 7. 
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